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The Hubbard model on a cube was revisited and extended by both nearest-neighbor Coulomb correlation
W and nearest-neighbor Heisenberg exchange J . The complete eigensystem was computed exactly for all
electron occupancies and all model parameters ranging from minus infinity to plus infinity. For two electrons
on the cluster the eigensystem is given in analytical form. For six electrons and infinite on-site correlation
U we determinded the groundstate and the groundstate energy of the pure Hubbard model analytically. For
fixed electron numbers we found a multitude of ground state level crossings depending on the various model
parameters. Furthermore the groundstates of the pure Hubbard model in dependence on a magnetic field h
coupled to the spins are shown for the complete U−h plane. The critical magnetic field, where the zero spin
groundstate breaks down is given for four and six electrons. Suprisingly we found parameter regions, where
the ground state spin does not depend monotonously on J in the extended model. For the cubic cluster
gas, i.e. an ensemble of clusters coupled to an electron bath, we calculated the density n(µ, T, h) and the
thermodynamical density of states from the grand potential. The ground states and the various spin-spin
correlation functions are studied for both attractive and repulsive values of the three interaction constants.
We determined the various anomalous degeneration lines, where n(µ, T = 0, h = 0) shows steps higher
than one, since in this parameter regions exotic phenomena as phase separation are to expect in extended
models. For the cases where these lines end in triple points, i.e. groundstates of three different occupation
numbers are degenerated, we give the related parameter values. Regarding the influence of the nn-exchange
and the nn-Coulomb correlation onto the anomalous degeneration we find both lifting and inducing of
degeneracies depending on the parameter values.
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1 Introduction

The conspicuous renaissance in the study of small Hubbard clusters is mainly due to two reasons. The
first is the availability and success of cluster methods, which were developed within the context of strong
electron correlation during the last decade [1–6] and applied to problems of high-Tc superconductivity. A
considerable amount of insight into the hot topics of pairing mechanisms, spin-charge separation, charge
ordering and pseudo gap behavior has been reached by detailed studies of small Hubbard clusters [7–14].
The other source is the technical possibility to produce and reproduce high quality nanostructures which
makes it possible to study the behavior of quantum dot clusters [15–21] or even clusters of a few atoms
contingently coupled to organic molecules [22–24]. Of course, a detailed knowledge of the cluster physics
is inevitable in both fields. If one aims at clusters with strongly correlated electrons, the Hubbard model,
occasionally extended by nn-Coulomb- and/or exchange interaction, is often a reasonable starting point.
Complete analytical solutions (in the sense, that all eigenvalues and all eigenvectors are determined) exist
for the Hubbard model with more or less additional terms for the dumpbell, the triangle, the square, the
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tetrahedron, the square pyramid and the octahedron [7, 25–30]. Incomplete (but very valueable) solutions,
e.g. restricted to the ground state or to half or low filling, big external fields etc. exist for n-site rings [31,32].
For other models analytical expressions are available for special electron (or hole) occupations and/or
parameter sets, e.g. for the square with next nearest neighbor hopping t′ equal to nearest neighbor hopping
t.

The present paper is related very close to our former studies of the (extended) Hubbard model on three
and four-site clusters and the related cluster gases [7,29,30]. It is rather astonishing to see to what a degree
it is possible to understand qualitatively the rather involved phase diagram of the Tc superconductors on
the bases of the square-cluster gas model. The main reason for that is the degeneration of cluster states
with different particle numbers and spin, which has a great influence on the coupling of spin- and charge
degrees of freedom, and indeed, the degeneracy of the ground states for the four-site cluster occupied either
with two or four electrons, is responsible for the charge separation and inhomogeneities in the pseudogap
phase of the cuprates, whereas their bosonic character accounts for the superconducting phase [8,10]. Also
the d-wave symmetry of the gap seems to be a direct consequence of the symmetry of the four-site cluster
ground states [9, 13]. As was shown in [29, 30], the addition of Coulomb or Heisenberg interaction to the
pure Hubbard Hamiltonian influences this degeneration considerably.

In the present paper we re-examine the Hubbard model on a cube to study the influence of additional
nearest-neighbor (nn) Coulomb and nn-exchange interaction, which are added to the standard Hubbard
model. The main focus of the present paper lies on the grand canonical spectrum and its degeneracies
between states differing by more than one electron. We want to see, where such regions in the complete
parameter space of the pure Hubbard model are and how they are influenced by the additional interactions.
After introducing the model in the next section, the third section will be based on a numerical calculation of
the complete canonical potential for every occupation number. The fourth section is devoted to ensembles
of clusters coupled to an electron reservoir, the cubic cluster gas. Here, the focus lies on ground state phase
diagrams, which show the degenerations differing by more than one electron. The behavior in the vicinity
of the degeneration points or lines may give rise to a likewise rich physics in the “cluster gas” or extended
systems built from these clusters as it was observed in the relation of the four-site Hubbard model on a
square to the square lattice. In a concluding section we will discuss the results.

2 The Hamiltonian

In the following, we consider the model

H = HH + HC + HJ (1)

with HH being the pure Hubbard model:

HH = t
∑

〈i�=j〉σ
c+

iσcjσ +
1
2

∑

iσ

(
Uniσni−σ − 2μniσ − σhniσ

)
, (2)

HC is the nn-Coulomb repulsion

HC =
W

2

∑

〈i�=j〉
ninj . (3)

Furthermore a nn-Heisenberg exchange term HJ

HJ =
J

2

∑

〈i�=j〉
SiSj (4)
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Table 1 Dimensions of the irreducible representations of the cubic point group Oh. For group
theoretical terminology we refer to [37].

Irreducible representation: Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7 Γ8 Γ9 Γ10

Dimension: 1 1 2 3 3 1 1 2 3 3

was added. Here c+
iσ and ciσ are the creation and destruction operators of electrons at site i with spin σ,

niσ = c+
iσciσ and ni =

∑
σ niσ . Si indicates the local spin operator at site i. For a detailed physical

reasoning of the additional terms in the Hamiltonian see e.g. [33]. Our Hamiltonian is an extension of
the Hamiltonian used e.g. in [34], since we treat the nearest-neighbor correlation W and the nearest-
neighbor exchange constant J as independent parameters. This is done mainly to cover pure Heisenberg
type models by setting W/t = 0, J/t �= 0. The chemical potential μ and the magnetic field h in z-
direction are introduced to take into account the effects of doping and applying external magnetic fields.
Please note, that the signs in front of the hopping and exchange term are positive, thus one has to be careful
while comparing with papers where other conventions are used. There are 48 states within that model.
Utilizing all symmetries, we reduced the Hamilton matrix to a block diagonal form. It has to be noted,
that the particle-hole-symmetry is broken in case of W/t �= 0. For details of this symmetry reduction
we refer to [7]. In contrast to our previous works, the biggest block has dimension 88, this prevented a
closed form solution. Nevertheless, the smallness of the analytically given block matrices allows a very
quick and extremely precise evaluation of the eigensystem. The results of the pure Hubbard model were
compared to the results of Callaway et al. [28] and to a complete independent pure numerical calculation
of the spectrum [35].

One interesting property of the cluster is its equivalence to the simple cubic lattice, using periodic
boundary conditions in every other bond with kinetic energy set to t/2 [36]. All following results are
applicable to that system as well.

3 Fixed electron occupations

3.1 Rigorous results

For two electrons on the cluster the Hamilton matrix can be brought to block diagonal form by applying
all the U-independent symmetries, with the maximum block dimension of four. Thus we have for that case
both the eigenvalues and eigenvectors as closed analytical expressions. We mention here, that an alternate
exact solution to the two-electron problem in the domain sz = 0 in d-dimensional hypercubes was given
before in [38]. Although we expect that our complete solution for the nondegenerate part of the spectrum
coincides with their solution in the threedimensional case in the considered domain, a comparison was
prevented by the very different conventions characterizing the eigenstates and a different set of symmetries
employed. For giving the reader an impression of the complexity of the results, we show the energy for the
lowest level with symmetry Γ1 and s = 0, which is the groundstate in the most parameter regions, in its
explicit dependence of the model parameters in a closed form in appendix A. The complete solution may
be found in [39].

For the pure Hubbard model (i.e. J = 0 and W = 0) in the infinite U limit we have investigated the
Nagaoka state [40,41], which is quite trivial since it has spin 7

2 and Γ1 symmetry. It is an eigenstate of the
Hamiltonian for finite U also, despite the fact, that it does not depend on the on-site correlation. The related
energy is −3t which becomes the groundstate for U ≥ 39.641741191(1)t. For N = 6 in the infinite U
limit the groundstate is highly non-trivial. It has spin zero and Γ1 symmetry. Despite its length we give it
in explicit form in appendix B. In contrast to the Nagaoka state it depends monotonously on the on-site
correlation. It becomes the groundstate for U ≥ 61.312646262(1)t, where the related energy is −4.90564t

www.ann-phys.org c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



422 R. Schumann and D. Zwicker: Extended Hubbard model on a cubic cluster

and goes to −2
√

4 +
√

3 t if the on-site correlation goes to infinity. The letter value agrees to 6 digits with
the numerical calculated number given by Takahashi [42].

3.2 Pure Hubbard model

The pure Hubbard model for the isolated cubic cluster has been discussed convincingly by Callaway et
al. [28]. We were able to reproduce all figures in the reference and could approve all properties mentioned
in the text. The ground state spin, given in Table 1 of the reference has been extended to negative correlation
parameters U . The only difference occurs for n = 5, where the ground state has minimal spin S = 1

2 for
U < 0t. For all other occupation numbers, the spin for negative U is the same as for vanishing U .

It is due to the rapidly increasing computer power over more than twenty years, that we are able now to
draw a more detailed picture of the magnetic properties of the system with respect to an applied magnetic
field h. For better comparison, the complete parameter space is shown in the same manner as in [29] using
the following mappings:

U ′ :=
U

6t + |U | h′ :=
h

t + |h| J ′ :=
J

t + |J | W ′ :=
W

t + |W | (5)

Note, that the correlation parameter has been scaled differently compared to the other parameters, mainly
to emphasize the transition region between weak and strong correlation, which is located around U = 6t,
the band width of the simple cubic lattice.

Although states of high energy might be interesting for e.g. spectroscopy, the present paper focuses on
the ground states and their dependence on the various parameters. The quantum numbers of the lowest
states for each set of parameters will be shown in a two-dimensional plot, allowing for studying the de-
pendence on two parameters simultaneously. In analogy to thermodynamics of extended systems, these
diagrams are called ground state phase diagrams (GSPDs), although they display no phase transitions, in
the sense of a diverging correlation length. The GSPDs utilize colored areas to depict regions of constant
ground state quantum numbers. The degeneracy of the respective ground states may be calculated by mul-
tiplying the spin degeneration 2S + 1 by the spatial one, which is equal to the dimension of the irreducible
representations printed in Table 1. If a magnetic field is applied, the spin degeneracy is lifted of course.

The first GSPDs in Fig. 1 analyze the isolated cubic cluster with respect to the on-site correlation U
and an external magnetic field h for all occupation numbers. They obviously are symmetric with respect
to the magnetic field, as expected. Additionally, the case g) n = 7 is identical to i) n = 9 as is required by
the particle-hole-symmetry. Since coding errors usually destroy this symmetry, we calculated the pictures
independently, thus increasing the confidence in our results. Nevertheless, in what follows only the bottom
half of the occupation numbers will be shown, if particle-hole-symmetry holds, which is the case for
W/t = 0.

Even occupation numbers exhibit a non-magnetic ground state for absent magnetic field, which is in
accordance to the picture of an antiferromagnetic state. Though, it is an interesting feature, that in some
cases, e.g. n = 4 and n = 6, a very small magnetic field is sufficient at small on-site correlation to produce
a magnetic ground state, whereas in the other cases n = 2 and n = 8 no such behavior may be seen.
For the interesting cases n = 4 and n = 6, Fig. 2 shows the critical magnetic field hC destroying the
non-magnetic ground state dependending on the on-site correlation, e.g. the line between the white and
light red region of figures d) and f). The states with Sz = 0 are most stable in an intermediate region of U .
Similar behavior has been found for the tetrahedron at n = 4, but not for the hexagon, showing that this is
not generic for small clusters. The kink in the n = 6 image is caused by the symmetry transition from a two
fold degenerated Γ3 groundstate with spin zero below U = 61.313t to the singlet Γ1 above [28]. In case
of an odd occupation number, the picture is much more uniform, in that there cannot be any states with
vanishing Sz and the magnetization rises with either increasing magnetic field strength |h| or the on-site
correlation U . At fixed U , the system runs through all possible spin projection values Sz with increasing
strength of the magnetic field until saturation.
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Fig. 1 (online colour at: www.ann-phys.org) Total spin projection Sz of the canonical ground states of the isolated
cubic cluster in dependence on the on-site correlation U and the magnetic field h for all occupation numbers in
increasing order, from a) n = 1 to i) n = 9. The colored areas denote a constant value of Sz with the inscribed value.
To show the complete parameter range, the axes have been transformed non-linearly using Eq. (5).
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Fig. 2 (online colour at: www.ann-phys.org) Critical magnetic field hC, where the ground states with
Sz = 0 and −1 are degenerated, depending on the on-site correlation U . The kink on the right panel is
caused by the spatial transition at U = 61.313t.
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3.3 Extended Hubbard model

The additional parameters of the extended model introduce a wide variety of new level crossings, which
might be understood by the help of GSPDs. In Fig. 3 the dependence on the on-site correlation U and the
spin exchange interaction J is shown for occupation numbers n = 2 to n = 8. The cases n < 2 are trivial
and therefore omitted. According to the Hamiltonian (4), one has to distinguish between a ferromagnetic
(J/t < 0) and an antiferromagnetic (J/t > 0) interaction. In the first case, the additional term favors spin
alignment. For extremely strong ferromagnetic interaction, the total spin is increased to its maximum for
all U at every occupation number. In some cases, e.g. n = 4 or n = 6 even a very small J/t < 0 introduces
a change to S = 1 for small positive on-site correlations, whereas for n = 5 a small positive J lowers the
spin from S = 3

2 to 1
2 . For the three occupation numbers n = 4, 5, 6 the exchange parameter therefore

has a big influence on the ground state spin. Contrary to the case n = 5, an antiferromagnetic interaction
has no drastic effects in general, since the correlation parameter U favors antiferromagnetic alignment,
too. This is especially visible in the case of the repulsive model, where only a few spatial transitions are
visible. For n = 7 the afore mentioned Nagaoka state [40, 41] is obtained for U > 39.642t for the pure
Hubbard model. The n=7 panel of Fig. 3 shows the influence of the additional exchange interaction on the
Nagaoka state (blue): Whereas the maximum spin state is stabilized for J/t < 0, it is completely destroyed
for approximately J > 0.06t even with U → ∞.

This influence of the exchange term holds in general, although there are some regimes, where the effects
are more subtile. Figure 6 shows the ground state spin S for different on-site correlations over a relatively
small region from J = −t to J = 0t, where for lower values an increasing tendency for ferromagnetic
alignment is expected. Indeed, this is found for both weakly and strongly correlated systems at U = 2t
and U = 8t, respectively. Contrary, for an intermediate region around U = 4t the spin does not depend
monotone on J showing the complex nature of the interaction.

The GSPDs for the nearest-neighbor coulomb interaction W are shown in Fig. 4. Interestingly enough,
there are differences in the effects of both coulomb interactions, most visible in the right column, where the
total spin increases with high positive values of U but not with W . The situation is different for negative U ,
where no change in total spin is observable, nevertheless spatial transitions take place. For the even occu-
pation numbers shown in the left column, the total spin is mostly zero. The only exceptions are for n = 4
a region for small W and positive U and for n = 6 at small positive U and negative W . Consequently,
adding a small nearest-neighbor Coulomb interaction rarely introduces ground state changes, notably in
the stability of the Nagaoka state at n = 7. The picture of the extended model is completed by the GSPDs
in dependence on the two extended parameters W and J for fixed correlation strength U = 6t shown in
Fig. 5. The images show the rich interplay of both interactions. Although it is hard to detect general rules,
one may roughly say that nearest-neighbor Coulomb interaction acts likewise as the on-site correlation U
does. The latter is deduced from the comparison to Fig. 3, where the pictures show similar structure.

4 Cluster gas

4.1 Cluster gas approximation

In contrast to the last chapter, where the results for fixed occupation number were given, the present one is
devoted to the so called “cluster gas”. That is an ensemble of non-interacting identical clusters coupled to
a reservoir of electrons, thus introducing the chemical potential μ. It serves as an approximation to the full
extended lattice, where every second bond is replaced by the indirect hopping via the particle bath, thus
allowing for fluctuations of the occupation numbers on each cluster and therefore modeling the effect of
doping.
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Fig. 3 (online colour at: www.ann-phys.org) Canonical
GSPDs in dependence on U and spin exchange parameter
J for the occupation numbers n = 2 . . . 8. Colored ar-
eas stand for ground states of constant quantum numbers,
which are listed on the right of each figure. Because no
magnetic field is applied, all states are degenerated with
respect to Sz. Degenerations may be read off by multi-
plying the spin degeneracy by the dimension of the irre-
ducible representation Γi.
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Fig. 4 (online colour at: www.ann-phys.org) Canonical
GSPDs in dependence on the on-site (U ) and nearest-
neighbor coulomb interaction (W ) for the occupation
numbers n = 2 . . . 8. Colored areas stand for ground
states of constant quantum numbers, which are listed on
the right of each figure. Because no magnetic field is ap-
plied, all states are degenerated with respect to Sz. Degen-
erations may be read off by multiplying the spin degener-
acy by the dimension of the irreducible representation Γi.

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.ann-phys.org



Ann. Phys. (Berlin) 522, No. 6 (2010) 427

S = 0, Γ1

S = 1, Γ9
−0.5

0.0

0.5

−0.5 0.0 0.5

S = 0, Γ1

S = 1, Γ9

W ′

J ′

Fig. 5 (online colour at: www.ann-phys.org) Canoni-
cal GSPDs for the parameters of the extended model at
U = 6t for occupation numbers n = 2 . . . 8. The depen-
dence on the nearest-neighbor coulomb interaction W and
the exchange interaction J is shown. Colored areas stand
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U = 4t, where the spin does not increase monotonically with lower J , what could have been expected and is retrieved
for the other cases.

0

2

4

6

8

−4 −3 −2 −1 0

kBT/t → 0

kBT/t = 0.1

μ/t

n

0

2

4

6

8

−4 −3 −2 −1 0 1

kBT/t → 0

kBT/t = 0.1

μ/t

n

0

2

4

6

8

−4 −2 0 2

kBT/t → 0

kBT/t = 0.1

μ/t

n

Fig. 7 (online colour at: www.ann-phys.org) The occupation number depending on the chemical potential µ in the
cubic cluster gas for three different correlation strengths U/t = 1, 4, 8 (f.l.t.r.). The two pictures on the left visualize
the weakly correlated region, whereas the right one shows a strongly correlated system. The dotted curves for a finite
temperature show the usual smearing of the steps.

4.2 Pure Hubbard model

In a first step, the influence of the chemical potential on the pure Hubbard model will be analyzed. The
occupation number n depending on μ for different values of the on-site correlation is shown in Fig. 7. The
step functions show similar behavior as in other small clusters [29], e.g. there are steps higher than one.
These steps correspond to degeneration points, where ground states differing in their electron occupation
by more than one have the same energy.

Figure 8 shows an overview of this essential feature. It generalizes the results to cover the complete
parameter space of both the correlation parameter and the chemical potential in a GSPD using the scaling
functions (5). Comparing the two figures, it is convincing that this non-linear scaling does not change the
qualitative picture of the phase diagram and may be used in the following. The above mentioned steps
reoccur as the boundaries between the colored areas in both images. The steps higher than one may be
found at borders of two regions, which are not consecutive in the occupation numbers displayed in the
legend to the right. Additionally, there exist points, where degeneration lines intersect, i.e. three different
ground states coexist. Those ground state triple points may be calculated with high accuracy. The results
for the repulsive model are printed in Table 2 and may be easily checked versus Fig. 8. They may mainly
serve as a reference calculation for other theoretical analysis, since it is very unlikely to have those special

Occupation n Correlation UTP/t Chem. potential μTP/t

2,3,4 13.29885 −0.4993926

6,7,8 3.372781 0.5218219

6,7,8 7.106821 1.3549741

6,7,8 15.32480 1.8342337

Table 2 Ground state triple points of the cubic
cluster gas for U/t > 0 and n ≤ 8. The related
parameters have been calculated to the printed
accuracy.
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Fig. 8 (online colour at: www.ann-phys.org) The occupation number of the ground state depending on the chemical
potential µ and the correlation parameter U in the cubic cluster gas. The left panel shows the complete parameter space
using primed values, whereas the right one is a magnification with unscaled parameters, to show the small area, where
the black marked region n = 7 is the ground state.

conditions in any real experiment. In a weak interacting extended system we have to expect the interplay
of three quantum phase transitions in the vicinity of the triple points. Regarding the degeneration lines, we
see, that they are present through a wide parameter range and are therefore reachable by experiments, e.g.
using electron or hole doping or pressure.

Since the degeneration points – and therefore especially the highly degenerated ones – are considered
to be the key to the complexity of the phase diagram, the stability with respect to the remaining parameters
is of major interest. Figure 9 shows the destruction of such a point by applying a small magnetic field. The
states with even occupation are not magnetic, while the state with n = 3 is a doublet analogous to the
canonical cases in Fig. 1. On the other hand, new degeneration points may be introduced by applying an
external magnetic field, which can be seen in Fig. 9, too, where the n = 2, 4 degeneracy is lifted by the
field.
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Fig. 9 (online colour at: www.ann-phys.org) Lowest energy levels in the vicinity of a degeneration point
depending on µ at U = 4t. A magnetic field h/t = 0.5 has been added in the right panel.

The influence of the magnetic field is studied comprehensively by means of the GSPDs shown in Fig. 10,
which show a multitude of new ground state degeneration lines and triple points. In contrast to the canonical
cases, the system does not pass all possible spin projections with increasing magnetic field, but rather
exhibits large jumps, e.g. at μ′ ≈ −0.6t from Sz = 0 to |Sz | = 2. This is accompanied with a change in
the occupation number from 〈n〉 = 2 to 〈n〉 = 4 and in the spatial symmetry from Γ1 to Γ6, what may
be deduced from the figures on the left. The system switches abruptly from two electrons with antiparallel
spins to a configuration, where four spins are aligned. This example shows the rich interplay of charge and
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Fig. 10 (online colour at: www.ann-phys.org) Occupa-
tion number n, spin projection Sz and spatial symmetry
Γ of the ground states depending on the chemical poten-
tial µ and the magnetic field h at fixed correlation strength
U = 6t. The meaning of the colors are visualized in the
legend right to each figure. Since all pictures cover the
same parameter space, the areas are related, such that n,
Sz and Γ may be extracted for any given point. The size of
the different areas may not be compared directly, because
of the non-linear transformed parameters.

spin degrees of freedom under the influence of a magnetic field, which is a completely new feature of the
cluster gas and was not present in the canonical case in Fig. 1. At small magnetic fields, the right figure
also displays an antiferromagnetic ground state, with mostly minimal spin projection. The only exception
is the case 〈n〉 = 5 around h = μ = 0t, where four spins seem to be aligned, while the remaining one is
antiparallel. This is in accordance with the related canonical results.

The spatial order of the local spins can be discussed in great detail using spin correlation functions,
what was first done for the canonical case by Callaway et al. [28]. The grand canonical case is shown in
Fig. 11. The degeneration lines of Fig. 8 are once again visible, since the same parameter range is covered
and the spin configuration depends heavily on the number of electrons. Consequently, the mean occupation
numbers shown in Fig. 8 may be used to explain features of the correlation functions.

The key feature is visible in the top right picture, where the nearest-neighbor correlation is shown: Only
the region with 〈n〉 = 7 exhibits a positive spin correlation denoting a tendency for a ferromagnetic ground
state, which is in accordance with Nagaoka’s theorem [40, 41], since 〈n〉 = 7 is the occupation number,
where exactly one electron is missing to half filling. Moreover, the calculation shows, that the Nagaoka state
is not only stable for infinite on-site correlation U , but for the whole region 〈n〉 = 7 with U > 39.642t,
where the transition to the S = 1

2 state takes place. An interesting conjecture may be drawn regarding the
spatial change of the state 〈n〉 = 6 at U = 61.313t, which occurs in the vicinity of the Nagaoka state. The
switch of the irreducible representation from Γ5 to Γ1 may be induced by the ferromagnetic n = 7 state,
which has Γ1-symmetry, too.

All other regions have a tendency for antiparallel spins, leading to antiferromagnetism in the extended
lattice. The next pictures support this point of view, since especially for half filling 〈n〉 = 8 parallel
alignment is favored across the face diagonal in c), but once again reversed across the space diagonal in
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d), which is in accordance with the view of an alternating spin configuration. Contrary, in the case of
〈n〉 = 7, all correlation functions are positive, supporting a parallel order. The picture is less clear for the
smaller occupation numbers, since the spatial configuration of the spins seems to be more complex and a
connection between neighboring spins can not be drawn that easily. This is also supported by the overall
smaller absolute value of the correlation functions, showing the weaker correlation directly.
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Fig. 11 (online colour at: www.ann-phys.org) The four different spin correlation functions of the cubic cluster gas
depending on the correlation parameter U and the chemical potential µ. The values of the functions are visualized
by colors, which might be associated using the legend right to each figure. The four functions shown are the same
as in [28]: Picture a) shows the mean local spin square 〈S2

z,i〉, whereas the other cases correlate spins on different
sites i and j, with increasing distance to each other: 〈Sz,iSz,j〉. There are three distinct possibilities on the cube: b)
nearest-neighbor, c) face diagonal and d) space diagonal.
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Fig. 12 (online colour at: www.ann-phys.org) Thermodynamical density of states for the cubic cluster gas depending
on the chemical potential for different correlation parameters at the temperature kBT = 0.1t. The function is shown
for three increasingly strong correlations U/t = 0, 4, 16. The axis of the chemical potential µ has been shifted by
U/2t to emphasize the particle-hole-symmetry.
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To complete the picture of the cubic cluster gas, this section ends with some further characteristic
functions, which were also computed for e.g. the square [43]. The spectral function Jciσc+

iσ
of the cubic

cluster has already been reported in [44] and has been confirmed. Additionally, the thermodynamic density
of states shown in Fig. 12 is defined as

DT(μ) :=
∂n(μ)

∂μ
. (6)

With increasing on-site correlation the initial four-peak structure of the uncorrelated model transforms into
a more complex picture: Two groups of peaks separate with an increasing gap inbetween. The separation
takes place at the transition region around U = 6t. This is similar to the spectral function and in qualitative
accordance with the common picture of the Hubbard-Mott transition.

4.3 Extended Hubbard model

In the same manner as in the canonical case, additional interactions may be added for the cluster gas. To
compare the results to the canonical case, the same terms are considered. It is evident, that the complete
phase diagram is extremely complex and only a small part will be discussed here.

The influence of a ferromagnetic (J < 0t) and antiferromagnetic (J > 0t) exchange interaction is
shown on the left panel of Fig. 13. The multitude of degeneration points increases drastically. Qualitatively,
the same features as in the canonical case of Fig. 3 are visible, in that a ferromagnetic exchange leads
to charge ordering and the opposing antiferromagnetic one does not have those qualitative impact, but
stabilizes the tendency for antiparallel spin ordering. Nonetheless, both characteristics lead to a half-filled
state for extreme values showing the tendency for an ordered state in general. The degeneration points
discussed in Sect. 4.2 are mostly visible throughout the whole range of J , although the state n = 7 is
stable around J ≈ −t. New degeneration points, e.g. between n = 0 and n = 2 are introduced for
positive J .

The nearest-neighbor Coulomb interaction is shown of the right side of the same figure. The qualitative
picture is quite similar to Fig. 8, the GSPD in dependence on U and μ. This is reasonable considering
both U and W denote Coulomb interactions, only differing in their spatial properties. More quantitatively,
it has been shown for the triangle, the tetrahedron and the square, that both parameters occur in fixed
combinations in most eigenvalues of the problem [29, 30]. The basic degeneration points of Sect. 4.2 are
stabilized for high absolute values of W and new points are introduced, where n steps e.g. from 4 to 8 at
W = t.
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Fig. 13 (online colour at: www.ann-phys.org) GSPDs of the extended model of the cubic cluster gas. The correlation
parameter U = 6t is fixed in both figures. The groundstates are pictured as colored areas depending on the chemical
potential µ and both additional parameters J and W , respectively. The quantum numbers are shown only for large
areas in the legend right to the figures.
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5 Discussion

The comparison of our semi-analytical treatment of the Hubbard model on a cubic cluster with the former
results of our analytical solutions on smaller clusters makes clear, that the complexity is increased con-
siderably by increasing the cluster size or by adding additional interactions to the Hamiltonians. For eight
sites we were still able to get the exact spectrum and eigenfunctions for the complete parameter region
from −∞ to +∞ for all parameters, thus providing a reference for other studies, where the (extended)
Hubbard model is employed.

The detailed reproduction of the results by Callaway et al. is a result, which provides us with confidence
in our symbolic code. It was a prerequisite for the treatment of the Hubbard model extended by additional
terms, i.e. an external magnetic field h coupled to the spins, and the nearest neighbor Coulomb and ex-
change interaction, W and J , respectively. The sometimes complex effects of increasing h have also been
found in other small clusters showing the competition between aligning the spins and minimizing their
kinetic energy. The situation becomes even more difficult with the additional interactions: Although the
tendency for ferromagnetic alignment caused by J/t < 0 has been recovered for most parameter regions,
there are exceptions, where lowering J also lowers the total spin, which would have rather been expected
for positive J . The influence of the nearest neighbor Coulomb interaction W is comparable to the on-site
correlation U and does mostly introduce spatial transitions in the GSPDs. It is questionable, whether the
enormous amount of spatial changes may be seen in bulk systems, but it has been recovered that the differ-
ence between odd and even electron occupation is of qualitative character, which has been reported for all
other small clusters, too.

With regard to extended systems, the cubic cluster gas is a model for the simple cubic lattice. The
approximation will be not too bad, if one assumes a weak inter-cluster hopping, which is then replaced
by the indirect exchange via the particle reservoir. Besides the highly non-trivial analytical closed-form
solution for two electrons, the most important results reported in this paper are the ground state level
crossings being visible in the various GSPDs. They may give rise to quantum phase transition in extended
systems. With respect to the cluster gas, the degeneration points of states with occupation numbers differing
by two or more are of central interest, e.g. the jump from n = 6 to n = 8 visible in Fig. 7. This is especially
important, since this degeneration line is present at moderate on-site correlation and lies in the weakly
underdoped region, thus being reachable by experiments. Utilizing doping, the mean electron occupation
of the cluster gas may be fixed to 〈n〉 = 7 and the result will be a mixture of clusters with six and eight
electrons, if U lies between 3.37t and 7.10t or is above 15.32t. One can presume, that something similar
to the stripe structure of 2D-systems may be observed.

The alignment of the spins has been studied using the spin correlation functions and it has been found,
that the half-filled case shows a tendency for antiparallel alignment, as expected. If the on-site correlation
is high enough, introducing one hole alters the system completely, such that the n = 7 spins are parallel
aligned, which accounts for a ferromagnetic ground state in the extended system, showing that Nagaoka’s
result is valid down to U = 39.642t. As a consequence one has to expect a ferromagnetic groundstate
for a mean electron occupation 〈n〉 = 7

8 and large on-site correlation U > 79.284t if the cubic lattice
is approximated by an array of week interacting cubic clusters with periodic boundary conditions. For
n = 6 we have a singlet ground state with Γ1 symmetry for strong electron correlation U > 61.313t ,
which may be considered as the two-hole counterpart of the Nagaoka state, apart from the fact that the
Nagaoka state does not depend on U , whereas the n = 6 ground state does. Moreover, the limit value
limU−>∞ E(n = 6, S = 0, Γ1)/t = −2

√
4 +

√
3 may serve as an excellent proving tool for qualifying

numerical codes.
Regarding the influence of the two additional parameters, the nearest-neighbor Coulomb interaction W

and the spin exchange interaction J , it has been found that the effect of W is comparable to the on-
site correlation U , which confirms the finding that the combination of U and W may be replaced by an
effective on-site correlation parameter in most cases, which was shown analytically for smaller clusters.
Contrarily, the effect of J is more important, since even small values may induce a change of the ground
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state spin in some areas. A striking example is the vanishing of the Nagaoka ground-state in the presence
of a small anti-ferromagnetic exchange. Additionally, the simple picture of J emphasizing the tendency for
(anti-)parallel spin alignment does not always hold, since there are parameter regions, where the contrary
has been observed.

The qualitative consequences of the degeneration points onto extended systems was discussed in detail
in [29] for smaller clusters. Since our results in general fit well to the given scenario, we abstain from
discussing it again. One remarkable new feature is the existence of two separated regions of the correlation
parameter U where a 6−8 degeneration happens. It is clear that we may expect the most interesting effects
in the vicinity of these degeneration points, i.e. for n = 7 or a hole density of 0.125 %.

Regarding frustration, our results fortify the view, that it is impossible to classify a cluster as frustrated
from geometry alone. It is inevitable to consider it together with the electron occupation and the correlation
strength. Typical frustrated situations will cover only small areas in the U -μ-GSPDs or even be absent.
On the contrary the area of unfrustrated configurations will grow at the costs of the area of neighboring
frustrated configurations. This reflects the fact, that frustration increases the ground state energy, thus only
a small amount of chemical energy Δμ(〈N〉) is needed to suppress it.

Probably, it will be hard, to realize an experimental situation, where strongly correlated electrons reside
on a cubic cluster or simple cubic lattice. Most probably seems to be a situation were d- or f-atoms are
embedded in organic molecules. An other possibility would be the realization of a compound, were an
effective simple cubic model remains after projecting out other parts of the full Hamiltonian, in analogy
to the reduction of the Hamiltonian of the copper oxides planes to an effective Hubbard model on a 2-d
simple cubic lattice.

A final conclusion from our work on small clusters will be in order. We have meanwhile the complete
eigensystem for all clusters, where the correlation independent symmetries are enough to break down the
Hamilton matrix to blocks lower than 5. We are sorry to say the cube does not belong to that set. Neverthe-
less, the big number of symmetry operators made it possible to block-diagonalize the model analytically,
with block sizes allowing a diagonalization to arbitrary numerical accuracy by help of symbolic computer
facilities. This exact solution allowed us to get an impression of the unforeseen complexity of the model.
We therefore do not intend to go to bigger cluster sizes or further additional terms in the Hamiltonian, since
with increasing size of the final blocks we will loose the benefit from our analytical treatment. Therefore,
ab initio numerical algorithms will be more appropriate for such tasks. We see the main benefit from our
analytical/exact cluster solutions in its reference function for other methods dealing with strongly corre-
lated electrons and as toy models for problems intimately connected to small clusters, e.g. entanglement,
quantum dot arrays or electron transport through single molecules.

Acknowledgements We are much indebted to J. Richter for his lively interest in the subject and valuable discussions.

A Analytical solution for N = 2

In the following we give the two possible groundstates for the electron occupation N = 2. The original
Hamilton matrix in that space is of dimension 120, which is reduced by symmetry to 61 subspaces with
maximum dimension 4. Thus, it is easy to get the eigensystem in its explicit dependency on the correlation
parameters. Unfortunately the lengthy form of some explicit eigenvalues and eigenvectors prevents printing
them. Therefore we restrict here to the presentation of the possible groundstate energies. The groundstate
for ferromagnetic or small antiferromagnetic exchange belongs to the eigenstates with Γ1 and s = 0 (gray
area in Figs. 3 and 4):

E16−GS = −A14

8
−

√
A1

2
−

√
A2

2
(7)
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√
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−
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√
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+
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√
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√
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√
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√
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A5 = −2A3
12 + 1728A11A12 − 36A13A14A12 + 864A2

13 + 324A11A
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A6 = A2
12 + 288A11 + 12A13A14

A7 = −2A3
12 + 1728A11A12 − 36A13A14A12 + 864A2

13 + 324A11A
2
14

A8 = A2
12 + 288A11 + 12A13A14

A9 = −A3
14

8
− A12A14 + 16A13

A10 = 324J2t2 + 9J2U2 + 624Jt2U − 1728Jt2W − 48JU2W

+13312t4 + 336t2U2 − 1664t2UW + 2304t2W 2 + 64U2W 2

A11 = 3Jt2U + 24t4 − 8t2UW

A12 = 3JU + 80t2 − 8UW

A13 = 9Jt2 − 14t2U − 24t2W

A14 = 3J − 2U − 8W .

The groundstate for strong antiferromagnetic exchange (dark yellow area in Fig. 3) is ninefold degenerated,
since it belongs to Γ9 and s = 1. The related energy is

E10−GS =
1
3

(
J

2
+ 4W

)
− 2

√
A1 cos (B1)√

3
(8)

B1 =
1
3

cos−1

(
− (J + 8W )

(
J2 + 16JW − 144t2 + 64W 2

)

24
√

3A3/2
1

)

A1 =
1
12

(J + 8W )2 + 16t2 .

The complete eigensystem is given in [39].

B Groundstate of the Hubbard model for U = ∞ and Ne = 6

In the following we give the groundstate of the pure Hubbard model with infinite on-site interaction U and
six electrons, i.e. two holes in the half filled cluster.

|ΨGS〉 = |s = 0, ms = 0, Γ1, E0 = −2
√

4 +
√

3 t〉 (9)

= C1|Φ1〉 + C2 |Φ2〉 + C3 |Φ3〉 + C4 |Φ4〉
+ C5 |Φ5〉 + C6 |Φ6〉 + C7 |Φ7〉 + C8 |Φ8〉 + C9 |Φ9〉
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|Φ1〉 = (|00ddduuu〉 − |00dduduu〉− |00dudduu〉 − |00duuudd〉 + |00uddduu〉 + |00uduudd〉

+|00uududd〉− |00uuuddd〉 + |0dd0duuu〉 − |0dd0uuud〉− |0ddu0udu〉 + |0du0duud〉

+|0du0uddu〉− |0dud0duu〉 − |0dud0uud〉 + |0duu0dud〉− |0ud0duud〉 − |0ud0uddu〉

−|0udd0udu〉 + |0udu0ddu〉 + |0udu0udd〉 + |0uu0dddu〉− |0uu0uddd〉 + |0uud0dud〉

+|d00duduu〉− |d00duudu〉 + |d00uduud〉 + |d00uuddu〉− |d0dud0uu〉 − |d0duu0du〉

−|d0udu0ud〉 + |d0uud0du〉 + |dd00uudu〉 − |dd00uuud〉− |dd0udu0u〉 + |dddu0uu0〉

+|ddduuu00〉− |ddu0udu0〉 + |ddudu00u〉 − |dduduu00〉− |dduu00du〉 + |dduu00ud〉

−|dduudu00〉 + |dduuud00〉 − |du00dduu〉 − |du00uudd〉− |du0ddu0u〉 + |du0udd0u〉

+|du0udu0d〉− |dud0duu0〉 − |dud0uud0〉 + |dudd00uu〉− |duddu00u〉 + |duu0dud0〉
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+|u0udd0ud〉 + |u0udu0dd〉 + |ud00dduu〉 + |ud00uudd〉− |ud0dud0u〉 − |ud0duu0d〉

+|ud0uud0d〉− |udd0udu0〉 − |uddd00uu〉 − |uddd0uu0〉 + |uddu0du0〉 − |uddu0ud0〉

+|uddud00u〉− |udduu00d〉 + |udu0ddu0〉 + |udu0udd0〉− |uduu00dd〉 + |uduud00d〉

+|uu00dddu〉− |uu00ddud〉 + |uu0dud0d〉 + |uud0dud0〉− |uudd00du〉 + |uudd00ud〉

−|uudddu00〉 + |uuddud00〉 − |uudud00d〉 + |uududd00〉− |uuud0dd0〉 − |uuuddd00〉)

|Φ2〉 = (|00dduudu〉 − |00dduuud〉 + |00uudddu〉 − |00uuddud〉 − |0dd0uduu〉 + |0dd0uudu〉

+|0ddu0duu〉− |0duu0ddu〉 + |0udd0uud〉 − |0uu0ddud〉 + |0uu0dudd〉 − |0uud0udd〉

−|d00dduuu〉 + |d00duuud〉 + |d0udd0uu〉 − |d0uud0ud〉 + |dd00duuu〉 − |dd00uduu〉

+|dd0uud0u〉 + |dddu00uu〉 − |ddduu00u〉 + |ddu0duu0〉− |ddud00uu〉 − |ddud0uu0〉

+|du0duu0d〉 + |dudd0uu0〉 + |dudduu00〉 − |duu0ddu0〉− |duuud00d〉 + |duuudd00〉

−|u00udddu〉 + |u00uuddd〉 + |u0ddu0du〉 − |u0duu0dd〉− |ud0udd0u〉 + |udd0uud0〉

+|udddu00u〉− |uddduu00〉 − |uduu0dd0〉 − |uduudd00〉 + |uu00dudd〉 − |uu00uddd〉

−|uu0ddu0d〉− |uud0udd0〉 + |uudu00dd〉 + |uudu0dd0〉− |uuud00dd〉 + |uuudd00d〉)

|Φ3〉 = (|00dududu〉 − |00duduud〉 + |00ududdu〉 − |00ududud〉 + |0ddu0uud〉 + |0ddudu0u〉

−|0dduuu0d〉− |0du0udud〉 + |0du0uudd〉 + |0dudud0u〉 + |0duduu0d〉 − |0duu0udd〉

+|0duudu0d〉− |0duuud0d〉 − |0ud0dduu〉 + |0ud0dudu〉 + |0udd0duu〉 + |0udddu0u〉

−|0uddud0u〉− |0ududd0u〉 − |0ududu0d〉 − |0uud0ddu〉 + |0uuddd0u〉 − |0uudud0d〉

−|d00ududu〉 + |d00uuudd〉 + |d0duduu0〉 + |d0duuud0〉 + |d0udu0du〉 + |d0ududu0〉

−|d0uduud0〉− |d0uudud0〉 − |d0uuu0dd〉 + |d0uuudd0〉 + |dd0u0udu〉 − |dd0u0uud〉

+|dd0uuu0d〉− |ddu0u0du〉 + |ddu0u0ud〉 + |ddu0uud0〉− |dduu0ud0〉 − |dduuu00d〉

+|du00dudu〉− |du00uddu〉 − |du0d0duu〉 + |du0d0udu〉 + |du0dud0u〉 − |du0u0ddu〉

−|du0u0udd〉 + |dud0d0uu〉 + |dud0u0du〉 + |dudu00du〉 + |dudu0ud0〉 − |dudud00u〉
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+|dududu00〉− |duu0d0du〉 + |duu0u0dd〉 − |duu0udd0〉− |duud00du〉 + |duudud00〉

−|u00ddduu〉 + |u00dudud〉 + |u0ddd0uu〉 − |u0ddduu0〉 + |u0ddudu0〉 − |u0dud0ud〉

+|u0duddu0〉− |u0dudud0〉 − |u0udddu0〉 − |u0ududd0〉 + |ud00duud〉 − |ud00udud〉

+|ud0d0duu〉 + |ud0d0uud〉 − |ud0u0dud〉 + |ud0u0udd〉− |ud0udu0d〉 − |udd0d0uu〉

+|udd0duu0〉 + |udd0u0ud〉 + |uddu00ud〉 − |uddudu00〉− |udu0d0ud〉 − |udu0u0dd〉

−|udud00ud〉− |udud0du0〉 + |ududu00d〉 − |ududud00〉 + |uu0d0ddu〉 − |uu0d0dud〉

−|uu0ddd0u〉− |uud0d0du〉 + |uud0d0ud〉 − |uud0ddu0〉 + |uudd0du0〉 + |uuddd00u〉)

|Φ4〉 = (|00duuddu〉 − |00udduud〉 + |0ddd0uuu〉 − |0du0dduu〉 + |0ud0uudd〉 − |0uuu0ddd〉

−|d00udduu〉 + |d0ddu0uu〉 + |dd0duu0u〉 + |ddd0uuu0〉− |dduu0du0〉 − |dduud00u〉

+|du00duud〉− |duud00ud〉 + |duuddu00〉 + |u00duudd〉− |u0uud0dd〉 − |ud00uddu〉

+|uddu00du〉− |udduud00〉 − |uu0udd0d〉 + |uudd0ud0〉 + |uuddu00d〉 − |uuu0ddd0〉)

|Φ5〉 = (|0d0dduuu〉 − |0d0duudu〉− |0dduudu0〉 − |0dudd0uu〉 − |0dudduu0〉 + |0duud0du〉

+|0u0uddud〉− |0u0uuddd〉 − |0uddu0ud〉 + |0uduu0dd〉 + |0uduudd0〉 + |0uuddud0〉

+|d0d0uduu〉− |d0d0uuud〉 − |d0du0duu〉 − |d0duud0u〉− |d0uddu0u〉 + |d0uu0dud〉

−|dd0uudu0〉 + |ddduu0u0〉 − |ddu0du0u〉 + |ddud0u0u〉− |du0du0ud〉 + |du0ud0ud〉

+|du0uddu0〉− |dud00uud〉 − |dud0uu0d〉 − |duddu0u0〉 + |duu00dud〉 + |duuu0d0d〉

−|u0dd0udu〉 + |u0duud0d〉 + |u0u0dddu〉 − |u0u0dudd〉 + |u0ud0udd〉 + |u0uddu0d〉

−|ud0du0du〉− |ud0duud0〉 + |ud0ud0du〉 − |udd00udu〉− |uddd0u0u〉 + |udu00ddu〉

+|udu0dd0u〉 + |uduud0d0〉 + |uu0ddud0〉 + |uud0ud0d〉− |uudu0d0d〉 − |uuudd0d0〉)

|Φ6〉 = (|0d0udduu〉 − |0d0uuddu〉− |0dddu0uu〉 − |0ddduuu0〉 + |0dduu0du〉 − |0duuddu0〉

+|0u0dduud〉− |0u0duudd〉 + |0udduud0〉 − |0uudd0ud〉 + |0uuud0dd〉 + |0uuuddd0〉

−|d0dd0uuu〉− |d0dduu0u〉 + |d0u0dduu〉 − |d0u0duud〉 + |d0ud0uud〉 − |d0uudd0u〉

−|dd0du0uu〉− |dd0duuu0〉 + |dd0ud0uu〉 − |ddd00uuu〉− |ddd0uu0u〉 + |ddu00duu〉

+|dduu0d0u〉 + |dduud0u0〉 + |du0dduu0〉 − |duu0du0d〉 + |duud0u0d〉 − |duudd0u0〉

+|u0d0uddu〉− |u0d0uudd〉 + |u0dduu0d〉 − |u0du0ddu〉 + |u0uu0ddd〉 + |u0uudd0d〉

−|ud0uudd0〉 + |udd0ud0u〉 − |uddu0d0u〉 + |udduu0d0〉− |uu0du0dd〉 + |uu0ud0dd〉

+|uu0uddd0〉− |uud00udd〉 − |uudd0u0d〉 − |uuddu0d0〉 + |uuu00ddd〉 + |uuu0dd0d〉)

|Φ7〉 = (|0d0uduud〉 − |0d0uuudd〉− |0dduduu0〉 − |0dudu0ud〉 − |0dududu0〉 + |0duuu0dd〉

+|0u0ddduu〉− |0u0duddu〉 − |0uddd0uu〉 + |0udud0du〉 + |0ududud0〉 + |0uududd0〉

−|d0du0udu〉− |d0dudu0u〉 + |d0u0uddu〉 − |d0u0uudd〉− |d0udud0u〉 + |d0uu0udd〉

−|dd0uuud0〉− |ddu0uu0d〉 + |dduu0u0d〉 + |dduuu0d0〉− |du0du0du〉 + |du0ud0du〉

+|du0udud0〉− |dud00udu〉 − |dud0du0u〉 + |duu00ddu〉 + |duud0d0u〉 − |duudu0d0〉
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+|u0d0dduu〉− |u0d0duud〉 − |u0dd0duu〉 + |u0dudu0d〉 + |u0ud0dud〉 + |u0udud0d〉

−|ud0du0ud〉− |ud0dudu0〉 + |ud0ud0ud〉 − |udd00uud〉− |uddu0u0d〉 + |uddud0u0〉

+|udu00dud〉 + |udu0ud0d〉 + |uu0dddu0〉 + |uud0dd0u〉− |uudd0d0u〉 − |uuddd0u0〉)

|Φ8〉 = (|0ddduu0u〉 − |0dduud0u〉 + |0duudd0u〉 − |0udduu0d〉 + |0uuddu0d〉 − |0uuudd0d〉

+|d0dduuu0〉− |d0udduu0〉 + |d0uuddu0〉 + |dd0d0uuu〉− |dd0u0duu〉 + |ddd0u0uu〉

−|ddu0d0uu〉− |du0d0uud〉 + |duu0d0ud〉 − |u0dduud0〉 + |u0duudd0〉 − |u0uuddd0〉

+|ud0u0ddu〉− |udd0u0du〉 + |uu0d0udd〉 − |uu0u0ddd〉 + |uud0u0dd〉 − |uuu0d0dd〉)

|Φ9〉 = (|0duddu0u〉 − |0uduud0d〉 + |d0duudu0〉 − |du0u0dud〉 + |dud0u0ud〉 − |u0uddud0〉

+|ud0d0udu〉− |udu0d0du〉)

C1 =

√
1
2

(
4 +

√
3
) (

3 + 2
√

3
)

180 + 84
√

3

C2 = − 1

12
√

2
(
4 +

√
3
)

C3 = −

√
1
6

(
4 +

√
3
)

60 + 28
√

3

C4 =

√
1
2

(
4 +

√
3
) (

3 + 2
√

3
)

90 + 42
√

3

C5 = − 1
12

√
2

C6 =
1
48

(√
2 +

√
6
)

C7 =
1
48

(√
2 −

√
6
)

C8 =
51 + 29

√
3

12
√

2
(
4 +

√
3
) (

15 + 7
√

3
)

C9 = − 1

4
√

2
(
4 +

√
3
)
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